дебаевский - translation to Αγγλικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:     

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

дебаевский - translation to Αγγλικά

Радиус Дебая; Дебаевский радиус; Длина Дебая; Дебаевский радиус экранирования; Экранировка Дебая; Экранирование поля заряда; Радиус Дебая — Хюккеля

дебаевский      
adj.
Debye; дебаевская температура, Debye temperature; дебаевское приближение, Debye approximation
Debye temperature         
  • The physical result of two waves can be identical when at least one of them has a wavelength that is bigger than twice the initial distance between the masses (taken from [[Nyquist–Shannon sampling theorem]]).
METHOD IN PHYSICS
Debye temperature; Debye Approximation; Debye approximation; Debye Model; Debye Temperature; Debye frequency; Debye Frequency; Debye Theory; Debye theory of specific heat capacities; Debye T3 law; Debye's theory of heat capacity; Debye's T3 law

общая лексика

дебаевская температура

Debye approximation         
  • The physical result of two waves can be identical when at least one of them has a wavelength that is bigger than twice the initial distance between the masses (taken from [[Nyquist–Shannon sampling theorem]]).
METHOD IN PHYSICS
Debye temperature; Debye Approximation; Debye approximation; Debye Model; Debye Temperature; Debye frequency; Debye Frequency; Debye Theory; Debye theory of specific heat capacities; Debye T3 law; Debye's theory of heat capacity; Debye's T3 law

общая лексика

дебаевское приближение

Ορισμός

Дебаевский радиус экранирования

расстояние, на которое распространяется в плазме или электролите действие электрического поля отдельного заряда. Эта величина была впервые введена П. Дебаем (См. Дебай) при исследовании явлений электролиза.

Если источник электрического поля, например заряженная частица, окружен средой, содержащей положительные и отрицательные заряды, то вследствие поляризации среды электрическое поле источника становится очень малым (экранируется) на расстояниях, превышающих Д. р. э. Величина Д. р. э. зависит от свойств среды: от концентрации заряженных частиц, от их заряда и от энергии их теплового движения, т. е. от температуры. Например, в плазме ионизованного водорода при концентрации 1016 см-3 и температуре 106 К Д. р. э. равен 5-10-5 см. См. также Плазма.

Βικιπαίδεια

Дебаевская длина

Деба́евская длина (дебаевский радиус) — расстояние, на которое распространяется действие электрического поля отдельного заряда в квазинейтральной среде, содержащей свободные положительно и отрицательно заряженные частицы (плазма, электролиты). Вне сферы радиуса дебаевской длины электрическое поле экранируется в результате поляризации окружающей среды (поэтому это явление ещё называют экранировкой Дебая).

Дебаевская длина определяется формулой

λ D = { j 4 π q j 2 n j ε r k T j } 1 / 2 {\displaystyle \lambda _{\text{D}}=\left\{\sum _{j}{\frac {4\pi q_{j}^{2}n_{j}}{\varepsilon _{r}kT_{j}}}\right\}^{-1/2}} (СГС),
λ D = { j q j 2 n j ε 0 ε r k T j } 1 / 2 {\displaystyle \lambda _{\text{D}}=\left\{\sum _{j}{\frac {q_{j}^{2}n_{j}}{\varepsilon _{0}\varepsilon _{r}kT_{j}}}\right\}^{-1/2}} (СИ),

где q j {\displaystyle q_{j}}  — электрический заряд, n j {\displaystyle n_{j}}  — концентрация частиц, T j {\displaystyle T_{j}}  — температура частиц типа j {\displaystyle j} , k {\displaystyle k}  — постоянная Больцмана, ε 0 {\displaystyle \varepsilon _{0}}  — диэлектрическая проницаемость вакуума, ε r {\displaystyle \varepsilon _{r}} — диэлектрическая проницаемость. Суммирование идёт по всем сортам частиц, при этом должно выполняться условие нейтральности j q j n j = 0 {\displaystyle \sum _{j}q_{j}n_{j}=0} . Важным параметром среды является число частиц в сфере радиуса дебаевской длины:

n D = 4 π 3 λ D 3 j n j . {\displaystyle n_{\text{D}}={\frac {4\pi }{3}}\lambda _{\text{D}}^{3}\sum _{j}n_{j}.}

Оно характеризует отношение средней кинетической энергии частиц к средней энергии их кулоновского взаимодействия:

n D ( E kinetic / E coulomb ) 3 / 2 . {\displaystyle n_{\text{D}}\thicksim (E_{\text{kinetic}}/E_{\text{coulomb}})^{3/2}.}

Для электролитов это число мало́ ( n D 10 4 {\displaystyle n_{D}\thicksim 10^{-4}} ). Для плазмы, находящейся в самых различных физических условиях, — велико. Это позволяет использовать методы физической кинетики для описания плазмы.

Понятие дебаевской длины введено Петером Дебаем в связи с изучением явлений электролиза.

Μετάφραση του &#39дебаевский&#39 σε Αγγλικά